Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction
نویسندگان
چکیده
Bayesian variable selection becomes more and more important in statistical analyses, in particular when performing variable selection in high dimensions. For survival time models and in the presence of genomic data, the state of the art is still quite unexploited. One of the more recent approaches suggests a Bayesian semiparametric proportional hazards model for right censored time-to-event data. We extend this model to directly include variable selection, based on a stochastic search procedure within a Markov chain Monte Carlo sampler for inference. This equips us with an intuitive and flexible approach and provides a way for integrating additional data sources and further extensions. We make use of the possibility of implementing parallel tempering to help improve the mixing of the Markov chains. In our examples, we use this Bayesian approach to integrate copy number variation data into a gene-expression-based survival prediction model. This is achieved by formulating an informed prior based on copy number variation. We perform a simulation study to investigate the model's behavior and prediction performance in different situations before applying it to a dataset of glioblastoma patients and evaluating the biological relevance of the findings.
منابع مشابه
مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین
Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits. The accuracy of prediction of genetic values in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملThe Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods
Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملAccuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017